ZERCON NANOTECH

High-Resolution FIB and SIMS with the Cesium Low Temperature Ion Source (LoTIS)

Adam V Steele, zeroK NanoTech Brenton Knuffman, zeroK

adam@zeroK.com Slides will be posted at zeroK.com/news.html

Technology and Applications

- Low Temperature Ion Source
 - Laser-cooling + Photoionization
- Heavy ion nanomachining
- Small spot sizes
- Excellent resolution at low energy (~2 nm resolution at 1 pA, 16 kV)
- 1 pA 10 nA

FIB:ZERO

- LoTIS + FIB
- Comparable to standard Ga⁺ FIB, with 2x higher resolution at low beam currents
- Compatible with normal peripherals, gas chemistries etc..

SIMS:ZERO

- FIB:ZERO with SIMS
 - Analysis of secondary ions in a mass spectrometer
- Best for elemental-compositional analysis
- Collab. with Luxembourg Institute of Science and Technology (LIST)

How does LoTIS work?

Ions are created in a laser-cooled atomic beam as it flows through the intersection of photoionizing laser beams

The cold temperature (~10 μK) is the key to achieving finely focused beams

Creates only the current to be used.

FIB:ZERO

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Resolution

PHYSIK

Ga ion image

Cs ion image

graphite pen: magnification 100k

Data by T. Lober, presented at Micro and Nano Engineering Conference (MNE) 2023

Material contrast

Ga ion image

Pt layer contrast of Ga inverted to Cs: dark <-> light

Data by T. Lober, presented at Micro and Nano Engineering Conference (MNE) 2023

Cs ion image

Implant Depth Comparisons (SRIM simulation)

ZERØK

- Comparison of three scenarios where spot size might be 'good enough'
- Cs has significantly reduced straggle and implant depth

Milling Accuracy: 110 nm Au on Si \rightarrow LoTIS provides clean mill boxes with sharp corners

Milled with Ga⁺ LMIS

Milled with Cs* LoTIS

- squares with 1, 0.6, 0.4, 0.2, 0.1 and 0.05 μm length
- milled through the Au layer
- milling time Ga and Cs almost the same

Milling in Copper

PHYSIK

Ga ion: 30 kV @ 2640 pA

Ga ion: 16 kV @ 1440 pA

 δy
 ruv
 curr
 twei
 det
 mode
 vub
 oit
 mag ±±
 ruv
 3 μm

 289
 2.00 kV
 0.10 nA
 10 μs
 ETD
 SE
 4.0 mm
 52 °
 8 000 x
 25.9 μm
 TU Kaiserslautern NSC T. Loeber

Cs ion: 16 kV @ 1070 pA

- sputtered Copper layer on Silicon
- layer thickness 1150 nm
- rectangle 20 μm x 20 μm
- milling time about 20 min
- dose about 4500 pC/μm²

Data by T. Lober, presented at Micro and Nano Engineering Conference (MNE) 2023

Milling in silver

- plasmonic structures
- Ga: inhomogeneous milling in polycrystalline silver
- Cs: significant better rings

Spot Sizes

Selected Beam Energies and Currents

Results given as a σ

- $d_{50} = 2.2 \sigma$
- $d_{35-65} = \frac{\sigma}{1.3}$,
- $d_{16-84} = 2\sigma$

Spot sizes are about 2x smaller than Ga⁺ (Helios) at <10 pA, and at lower energy

Worse spot sizes than Zeiss He/Ne, but better machining performance in many cases

Methodology in [1]

[1] A V Steele *et al* 2017 *Nano Futures* **1** 015005 Open access link: <u>https://iopscience.iop.org/article/10.1088/2399-1984/aa6a48</u>

		ΟΚν		
Current (pA)	Spot Size (1- σ nm)	Current (pA)	Spot Size (1- σ nm)	
1.5	<2.0	1.5	2.3	
3.0	2.3	3	2.5	
10	4.0	10	4.7	
30	7.5	30	7.6	
100	23	100	55	
300	57	300	150	
1000	175	1000	244	
5500	580	2600	510	

 $1 \leq |\lambda|$

Low-Energy

Energy (kV)	Current (pA)	Spot Size (1- σ nm)
5	3.5	15
2	3.5	44

Summary- FIB:ZERO

Milling Accuracy: 110 nm Au on Si

 \rightarrow LoTIS provides clean mill boxes with sharp corners

 HV
 curr
 dwell
 det
 mode
 WD
 tit
 mag ⊞
 HFW
 ⊥
 ⊥
 µm

 2.00 kV
 0.10 nA
 300 ns
 TLD
 SE
 4.0 mm
 0 °
 50 000 x
 4.14 µm
 TU Kaiserslautern NSC T. Loeber

- squares with 1, 0.6, 0.4, 0.2, 0.1 and 0.05 μm length

Milled with Cs⁺ LoTIS

- milled through the Au layer
- milling time Ga and Cs almost the same

PHYSIK

Milling in silver

TE TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

NSC

- plasmonic structures
- Ga: inhomogeneous milling in polycrystalline silver
- Cs: significant better rings

High resolution FIB nanomachining tool

... with a Cs⁺ ion source

... excellent at milling small structures

... compatible with depo & etch gas chemistries

... demo tool available for collaborations

... available as a FIB-SEM (Thermo-Fisher SCIOS)

SIMS: Primary Ion Species Matters

Differing Sputter Rates \rightarrow Analysis Time

Differing interaction Volumes \rightarrow Resolution

Differing Yields → Sensitivity Floor, SNR

Existing Elemental Analysis Techniques and a New Solution

EDX/EELS

- Long sample-prep times
- 3D analysis infeasible
- Low-Z elements challenging

Site-Specific SIMS

- Resolution limited to ~50 nm with high yield (CAMECA NanoSIMS), or
- Can get a high resolution FIB (Ga, He, Ne) with a time-of-flight SIMS analyzer. But low secondary ion yields from these beams usually results in poor lateral resolution. Additionally, time-of-flight analyzers necessitate **long** acquisition times.

These points are addressable by **SIMS:ZERO**

- Few-nanometer resolution (slide 21)
- High secondary ion yield (slides 23,24)
- Integrated sample-prep and analysis capability (slides 25-31)

SIMS:ZERO

Instrument Overview

Cs+ FIB:ZERO (zeroK) and SIMS spectrometer (LIST: Luxembourg Institute of Science and Technology) on a 600 series FIB (FEI)

Lotis Magnetic Focal LoTIS Ion [Plane Sector Column Focal plane Detector Primary Ion Spectrometer Beam Axis (Cs+) Electrostatic V SI Extraction Sector Optics Secondary Ion Beam Axis (+ or -) Sample FIB

- FIB online 6/2020 - SIMS online 5/2021

Continuous Detector

- Sample the entire mass spectrum for every pixel (e.g. 6-350 amu)
- Collect the entire spectrum (as in ToF SIMS), but without painfully long acquisition times
- 480 mm micro-channel plate
- Delay lines, discriminators allow for pulse counting along the full length

Spectrum (dM=0.10 amu)

ZERØ

SIMS:ZERO Resolution Tungsten Carbide

- SIMS:ZERO can provide higher resolution SIMS scans than any other instrument
- SIMS resolution is a function of abundance, yield, and spot size
- SIMS:ZERO has a focused ion beam with <3 nm spot size, and since it's Cs⁺ we achieve high yields for many materials
- In samples with high abundances, resolution at near the physical limits of SIMS can be achieved (see right)

Multi_WC_2105121624015_CH1.TIF

$\sigma = 6.1 nm$ (!)

Negative lons

05/12/2021

2.97um 2.5

16

U (kV)

WC (184 amu)

Working Distance = 51.6mm	Date
272s acquisition time	Sample
272s acquisition time.	FOV (um)
	I (pA)

Diatoms **LIST** (Silica — shelled algae) 7.5 um FoV

Needle in a haystack:

Find the TiO nanoparticle in the huge, fixed cell

LIST

48Ti¹⁶O

SIMS Analysis Example CIGS Cu(In,Ga)Se₂ – Rb doped

<u>Summary</u>

- CIGS is a solar cell absorber material
 - Rubidium doping increases conversion efficiency
- SIMS spectra clearly show all CIGS elements:
 - Cu, In, Ga, Rb in Positive Mode
 - Se in Negative Mode
- Secondary ion imaging channels show distribution of elements in sample, eg Rb dopants concentrated in grain boundaries
- Secondary electron images provide complementary information at high resolution
- Section view technique provides superior SIMS data

Werner, et al. <u>Scientific</u> <u>Reports</u> volume 10, 7530 (2020)

Secondary electron image

- Sample polished, ready for SIMS
- 9.5 μm FOV

Rb⁺ SIMS Image

- Rb confined to grain boundaries
- Grains are smaller near the interfaces
- Bilayer structure in the Moly layer

CIGS Cu(In,Ga)Se₂ – Rb doped Section View – Positive Ions – Post 3rd Polish

Na – Soda Lime Glass

Ga concentration gradient ↑

In concentration gradient \downarrow

Cs+, 16keV, 10pA, 51.6mm WD CIGS_Pos_2107201626359.csv

TiNi Pillars Multilayer Ti / Ni Pillars on Au/Cr/Si Substrate

TiNi Pillars

'Large' Area Depth Profile (7.5µm Gate)

Parameter	Value
Current	5pA
Energy	5kV
Polarity	Neg
Gate FOV	7.5 μm
Integration time	1000ms
Field	600mT

TiNi Pillars

'Small' Area Depth Profile (200nm Gate)

ZERØK

Parameter	Value
Current	2pA
Energy	5kV
Polarity	Neg
Gate FOV	200 nm
Integration time	250ms
Field	600mT

Boron Doped Silicon Depth Profile Comparison – Reference Sample

Implantation of B at 190 keV; Dose 10^{16} ions/cm²

[1] Eswara, et al. MRS COMMINCATIONS. Volume 9, Issue 3 (2019) 10.1557/mrc.2019.89

	SIMS:ZERO	SC Ultra
Primary Ion	Cs ⁺	02+
Energy	16kV	4.5kV
Current	25 pA	85000 pA
Area	4.2um x 4.2um	?
Polarity	Neg	Pos
Secondary Ion	BO2-	B+

Si:B Crater

Aluminum Doped Silicon Depth Profile Comparison – Reference Sample

Implantation of Al at 190 keV; Dose 10^{16} ions/cm²

	SIMS:ZERO
Primary lon	Cs+
Energy	16kV
Current	25pA
Area	4.2um x 4.2um
Polarity	Neg
Secondary Ion	AIO-

Si:Al Crater

SUMMARY SIMS:ZERO

Strengths:

... has all the capabilities of FIB:ZERO

... adds high-resolution, high-sensitivity, high speed elemental analysis

... consider in lieu of EDX or ToF SIMS for analysis of complex, multi-element, or light element samples

... new opportunities for FIB beam control via SIMS signal

Weaknesses:

Lower mass-resolving power than most dedicated SIMS systems

Quantification of concentrations harder than EDX

CIGS Cu(In,Ga)Se₂ – Rb doped

Section View - Positive Ions

SE Image - Pre-SIMS

ZERØK

- Rb confined to grain boundaries
- Grains are smaller near the interfaces

TiNi Pillars 'Small' Area Depth Profile (200nm Gate)

Parameter	Value
Current	2pA
Energy	5kV
Polarity	Neg
Gate FOV	200 nm
Integration time	250ms
Field	600mT